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ABSTRACT

A low-complexity ESPRIT method for direction-of-arrival
(DOA) estimation is proposed in this paper. Unlike the con-
ventional subspace based methods for DOA estimation, the
proposed method only needs the training data of one signal
to perform the forward recursions of the multi-stage wiener
filter (MSWF), does not involve the estimate of the covari-
ance matrix or its eigendecomposition. Thus, the proposed
method is computationally advantageous. Numerical re-
sults are given to illustrate the performance of the proposed
method.

1. INTRODUCTION

Estimating the direction-of-arrival (DOA) parameters of sig-
nals in the noisy background is an important problem in
many areas such as communication, radar, sonar and geo-
physical seismology. It is well known that subspace based
methods which rely on the decomposition of the observation
space into signal subspace and noise subspace, can provide
high-resolution DOA estimations with good performance.
However, the common subspace based methods such as the
MUSIC [1] and ESPRIT [2] methods, involve the estimate
of the covariance matrix and its eigendecomposition. As
a result, the common subspace based methods are rather
computationally intensive, especially for the case where the
model orders in these matrices are large. Recently, the meth-
ods called reduced-order correlation kernel estimation tech-
nique (ROCKET) [3] and ROCK MUSIC [4] were presented
for high-resolution spectrum estimation with lower com-
putational cost. However, the ROCK MUSIC technique
needs the forward and backward recursions of the multi-
stage wiener filter (MSWF) [5], which increase the compu-
tational complexity of the algorithm.

The objective of this paper is to develop a low-complexity
method for DOA estimation, based on the MSWF. Unlike
the ROCKET or ROCK MUSIC technique, the proposed
method merely needs the forward recursions of the MSWF
to estimate the signal subspace, does not involve the back-
ward recursions of the MSWF, thereby further reducing the
computational complexity of the algorithm. Compared with
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the more classical eigendecomposition based methods, the
proposed method does not need the estimate of the covari-
ance matrix or its eigendecomposition. Therefore, the novel
method is computationally advantageous. Basically, the pro-
posed method performs similarly to the classical ESPRIT
method but finds the signal subspace in a more computa-
tionally efficient way.

2. PROBLEM FORMULATION

2.1. Data Model

Let us consider a uniform linear array (ULA) consisting
of M isotropic sensors. Impinging upon the ULA are P
wavefronts from different directions {θ1, θ2, · · · , θP }. The
M × 1 output vector of the array at the kth snapshot can be
written as

x(k) =

P∑
i=1

a(θi)si(k) + n(k) k = 0, · · · , N−1 (1)

where si(k) is the scalar complex waveform referred to as
the ith signal, n(k) ∈ CM×1 is the complex noise vector, N
denotes the number of snapshots, P represents the number
of signals, a(θi) is the steering vector of the array toward
direction θi and takes the following form

a(θi) =
1√
M

[
1, ejϕi , · · · , ej(M−1)ϕi

]T

(2)

where ϕi = 2πd
λ

sin θi in which θi ∈ (−π/2, π/2), d and λ
are inter-element spacing and the wavelength, respectively.

In matrix notation, (1) can be rewritten as

x(k) = A(θ)s(k) + n(k) k = 0, 1, · · · , N−1 (3)

where

A(θ) = [a(θ1),a(θ2), · · · ,a(θP )] (4)

s(k) = [s1(k), s2(k), · · · , sP (k)]
T (5)

are the M × P steering matrix and the P × 1 complex sig-
nal vector, respectively. Throughout the paper we assume
that M > P . Furthermore, the background noise uncor-
related with the signals is modeled as a stationary, tempo-
rally white, zero-mean Gaussian random process, which is

IV - 9290-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005



also spatially white and circularly symmetric with the sec-
ond moments

E
[
n(k)nH(l)

]
= σ2

n
δk,lIM and E

[
n(k)nT (l)

]
= 0 (6)

where δk,l is the Kronecker delta which is 1 for k = l and
0 for k �= l. We also assume that all signals are jointly
stationary, temporally white, zero-mean complex Gaussian
random processes. Under these assumptions, the output of
the array is complex Gaussian with zero mean and the co-
variance matrix

Rx = E
[
x(k)xH(k)

]
= A(θ)RsA

H(θ) + σ2
n
IM (7)

where σ2
n

is the noise variance and Rs = E
[
s(k)sH(k)

]
is

the signal covariance matrix.
For uncorrelated signals, the eigendecomposition of Rx

can be expressed as

Rx = VsΛsV
H
s

+ σ2
n
VnVH

n
=

M∑
i=1

λiviv
H
i (8)

where λ1 ≥ λ2 ≥ · · · ≥ λP+1 = · · · = λM = σ2
n
,

Vs = [v1,v2, · · · ,vP ] and Vn = [vP+1,vP+2, · · · ,vM ].
Since the column rank of Vs is equal to the rank P of Rs,
the columns of Vs span the same range subspace of A(θ).
Considering (7) and (8), and performing some manipula-
tions yields

Vs = A(θ)Q (9)

where Q ∈ CP×P is the full-rank matrix.

2.2. Multi-Stage Wiener Filter

The MSWF was developed by Goldstein et al [3] to find an
approximate solution to the Wiener-Hopf equation which
does not need the inverse of the covariance matrix. The
MSWF based on the data-level lattice structure [6] is given
by the following set of recursions:

• Initialization: d0(k) = s1(k) and x0(k) = x(k).

• Forward Recursion: For i = 1, 2, · · · , D:
hi = E[xi−1(k)d∗i−1(k)]/‖E[xi−1(k)d∗i−1(k)]‖2;
di(k) = hH

i xi−1(k);
xi(k) = xi−1(k) − hidi(k).

• Backward Recursion: For i = D, D − 1, · · · , 1 with
εD(k) = dD(k):

wi = E[di−1(k)ε∗i (k)]/E[|εi(k)|2];
εi−1(k) = di−1(k) − w∗

i εi(k).

3. LOW-COMPLEXITY ESPRIT METHOD

Since the matched filters h1,h2, · · · ,hP are mutually or-
thogonal, the rank P MSWF is completely equivalent to

solving the Wiener-Hopf equation in the Krylov subspace

K(P ) = span
{
rx0d0

,Rx0
rx0d0

, · · · ,R
(P−1)
x0

rx0d0

}
[7].

Consequently, the matched filters create an orthogonal basis
for the Krylov subspace. Therefore, there exists a full-rank
matrix K ∈ CP×P such that

TP =
[
rx0d0

,Rx0
rx0d0

, · · · ,R(P−1)
x0

rx0d0

]
K (10)

where TP = [h1,h2, . . . ,hP ]. It follows from (8) that

R(i)
x0

= VsΛ
(i)
s

VH
s

+σ2i
n

VnVH
n

i = 0, 1, · · · , P−1 (11)

It can be observed that rx0d0
is contained in the signal sub-

space. Hence VH
n

rx0d0
= 0. Inserting (11) into (10) and

noting that VsV
H
s

+ VnVH
n

= IM yield

TP =
[
VsV

H
s

rx0d0
, · · · ,VsΛ

(P−1)
s

VH
s

rx0d0

]
K

= Vs

[
VH

s
rx0d0

, · · · ,Λ(P−1)
s

VH
s

rx0d0

]
K.(12)

By inserting (9) into (12), we have

TP = A(θ)Q
[
VH

s
rx0d0

, · · · ,Λ(P−1)
s

VH
s

rx0d0

]
K

= A(θ)H (13)

where H = Q[VH
s

rx0d0
,ΛsV

H
s

rx0d0
, · · · ,Λ

(P−1)
s VH

s
rx0d0

]K.
It can be observed that H is the nonsingular matrix.

3.1. ESPRIT Method Based on the MSWF

We define the sub-matrices A1 and A2 by deleting the first
and last rows from A(θ) respectively, and the sub-matrices
T1 and T2 by deleting the first and last rows from TP re-
spectively, namely[

T1

last row

]
=

[
A1

last row

]
H =

[
A1H

last row

]
(14)

[
first row

T2

]
=

[
first row

A2

]
H =

[
first row
A2H

]
. (15)

It follows from (14) and (15) that

T1 = A1H (16)

T2 = A2H. (17)

It is easy to see from (4) that A(θ) has the vandermonde
structure. Thus, the relation between the sub-matrices A1

and A2 can be formulated as

A2 = A1Φ (18)

where Φ = diag(ejϕ1 , ejϕ2 , · · · , ejϕP ). Therefore, the
DOA estimation can be reduced to find the diagonal ma-
trix Φ. Since H is the full-rank matrix, by inserting (16)
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and (17) into (18), and performing some algebraic manipu-
lations, we have

T2 = T1H
−1ΦH = T1Ψ (19)

where Ψ = H−1ΦH. Notice that Ψ and Φ are related by
a similarity transformation, and thus have the same eigen-
values. Solving (19) in either a least-squares sense (LS)
or a total-least-squares sense (TLS) yields Ψ. Performing
eigendecomposition to Ψ results in

Ψ =

P∑
i=1

µieie
H
i (20)

where µi and ei are the eigenvalues and eigenvectors of Ψ,
respectively. Therefore, the DOA parameters are given by

θi = arcsin

(
λarg (µi)

2πd

)
, i = 1, 2, · · · , P (21)

where arg (µi) represents the phase angle of the complex
number µi.
Remark: Notice that the efficient implementation of MSWF
avoids the formation of blocking matrices, and all the op-
erations of the MSWF only involve complex vector-vector
products, thereby implying the computational complexity
of O(MN)for each matched filter hi, i ∈ {1, 2, · · · , P}.
To fulfil the estimations of the signal subspace, P stages of
the MSWF is needed. Thus, the computational cost of the
proposed method is only O(PMN) flops. However, the
classical ESPRIT method resorts to the estimate of the co-
variance matrix and its eigendecomposition, which require
O(M2N + M3) flops. Therefore, the proposed method is
much more computationally efficient than the classical ES-
PRIT method, in particular for the case of large array.

3.2. Extension to Coherent Signal Condition

In the case of coherent signals, we must resort to the smooth-
ing technique to decorrelate the coherent signals since the
signal subspace estimated by the method above is incorrect
anymore. For the spatial smoothing technique [8], an array
of M sensors is subdivided into L subarrays. Thereby, the
number of elements per subarray is ML = M − L + 1. For
l = 1, 2, · · · , L, let the ML × M matrix Jl be a selection
matrix, which takes the following form

Jl =
[

0ML×(l−1)

... IML×ML

... 0ML×(M−l−ML+1)

]
.

(22)
Jl is exploited to select part of the observation data matrix
X0 = [x0(0),x0(1), · · · ,x0(N − 1)], which corresponds
to the lth subarray. Hence, the spatially smoothed data ma-
trix is constructed as

X̄0 = [J1X0 J2X0 · · · JLX0] ∈ CML×LN . (23)

Similarly to X̄0, the ”spatially smoothed” training signal
vector should take the following form

d̄0 = [d0; d0; · · · ; d0︸ ︷︷ ︸
L

] ∈ CLN×1 (24)

where d0 = [d0(0), d0(1), · · · , d0(N − 1)]
T ∈ CN×1. Thus,

the ith spatially smoothed pre-filter of the MSWF is given
by

h̄i =
r̄xi−1di−1

‖r̄xi−1di−1
‖2

:=
X̄i−1d

∗

i−1

‖X̄i−1d
∗

i−1‖2
. (25)

Therefore, for coherent signals, the low complexitymethod
for DOA estimation based on the MSWF is summed as fol-
lows:

Step1: Perform the spatial smoothing technique to the M×
N observation data matrix X0, obtain the spatially
smoothed ML × NL data matrix X̄0;

Step2: Construct the spatially smoothed training data vec-
tor d̄0 by the way shown in (24);

Step3: Perform the following recursions
For i = 1, 2, · · · , P :

h̄i = X̄i−1d̄
∗

i−1/‖X̄i−1d̄
∗

i−1‖2,
d̄i = h̄H

i X̄i−1,
X̄i = X̄i−1 − h̄id̄i.

Obtain the signal subspace T̄P =
[
h̄1, h̄2, · · · , h̄P

]
;

Step4: Define the sub-matrices T̄1 and T̄2 in the same way
as (14) and (15). Replace T1 and T2 of (19) with
T̄1 and T̄2, respectively. Obtain Ψ̄ in either a least-
squares sense (LS) or a total-least-squares sense (TLS).
Compute the eigenvalues µ̄i, i = 1, 2, · · · , P of Ψ̄.

Obtain the DOA parameters by θi = arcsin
(

λarg(µ̄i)
2πd

)
,

i = 1, 2, · · · , P .

4. NUMERICAL RESULTS

Suppose there are three signals impinging upon the ULA
consisting of 20 sensors from the same signal source. The
first is a direct-path signal and the others refer to the scaled
and delayed replicas of the first signal that represent the
multipaths or the ”smart” jammers. The propagation con-
stants are {1,−0.8+j0.3,−0.4−j0.5}. The true DOAs are
also assumed to be {0o,−5o, 5o}. The rank of the MSWF
is equal to 3. 1000 Monte Carlo runs have been made to
compute the RMSE’s of the estimated DOAs for the two
methods.

The RMSE’s of the estimated DOAs versus SNR are
shown in Fig. 1. It is easy to see from Fig. 1 that the ex-
perimental results of the proposed method are nearly identi-
cal to those of the classical ESPRIT estimator when SNR≥
22dB. When SNR is less than 22dB, the proposed method
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outperforms its counterpart based on the eigendecomposi-
tion of the spatially smoothed covariance matrix. As SNR
increases, the RMSE’s of the two methods eventually ap-
proach to the corresponding Cramér-Rao bound (CRB).

Fig. 2 shows the RMSE’s of the estimated DOAs for
the two methods versus the number of snapshots. It can be
observed that the proposed method surpasses the classical
ESPRIT method over the range of the number of snapshots
that we simulated. Especially when the number of snap-
shots is less than 128, the improvement is significant. When
the number of snapshots increases, the RMSE’s of the two
method approach to the CRB.

5. CONCLUSION

We have developed a low-complexity ESPRIT method in
this paper. The computational complexity of the proposed
method is only O(PMN) flops. In contrast to the classical
ESPRIT method which requires O(M2N + M3) flops, the
proposed method is computationally efficient, especially for
the case of large array. Numerical results imply that the
proposed method outperforms the classical ESPRIT method
in estimation accuracy.
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Fig. 1. RMSE’s of estimated DOAs versus SNR. N=128,
M=20 and 1000 trials.
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